
XTLite for Power Macintosh
User s Guide and Getting Started Manual

XTLite is a publically available toolkit that allows you to write software that adds custom features and

enhancements to QuarkXPressfi. Using XTLite with QuarkXPress you will be able to:

Add a Word Processing Filter

Add Menu Items

Trap and Post User Events

Create Dialog Boxes

Manipulate Text

This manual is designed to be an introduction to XTLite, as well as a tutorial for the three main features of
XTLite. Step-by-step instructions are included for writing a word processing filter, adding a menu item, and
trapping and posting user events in QuarkXPress with XTLite. Additional information is included at the end of

this manual about QuarkXTensionsfi technology and the XTensionfi developer program.

This manual is freely distributable; you may copy and redistribute it under certain conditions. Please see the
copyright and distribution statement on the following page.

:

License Agreement

'1994 by Quark, Inc. All rights reserved.
Printed in the United States of America

This documentation and the accompanying software is made available �AS IS� without charge and without warranty of any
kind.

QUARK, INC. DISCLAIMS ANY IMPLIED WARRANTY OF THIS PRODUCT INCLUDING, BUT NOT LIMITED TO, ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
QUARK, INC. BE LIABLE TO A CUSTOMER FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF OR INABILITY TO USE THE SOFTWARE OR ACCOMPANYING DOCUMEN-
TATION HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY. THESE LIMITATIONS WILL APPLY EVEN IF
QUARK HAS BEEN ADVISED OF SUCH POSSIBLE DAMAGES. Some states or regions do not allow the exclusion or
limitation of incidental or consequential damages, or limitations on implied warranties, so the above limitations or exclu-
sions may not apply to particular customers.

Trademark Information
Quark Publishing System, QPS and XTensions are trademarks of Quark, Inc. Quark, QuarkXPress, and QuarkCopyDesk
are trademarks of Quark, Inc. which have been registered in the U.S. Patent and Trademark Office and in many other
countries.

Apple Disclaimer
The following disclaimer is required by Apple Computer, Inc. It applies to Apple software. All other software is covered by
the limited liability of Quark,Inc.
Apple Computer, Inc.�s (�Apple�) licensor(s) makes no warranties, express or implied, including without limitation the
implied warranties of merchantability and fitness for a particular purpose, regarding the software. Apple�s licensor(s) does
not warrant, guarantee or make any representations regarding the software in terms of its correctness, accuracy, reliabili-
ty, currentness or otherwise. The entire risks as to the results and performance of the software is assumed by you. The
exclusion of implied warranties is not permitted by some jurisdictions. The above exclusion may not apply to you.

In no event will Apple�s licensor(s), and their directors, officers, employees or agents (collectively Apple�s licensor) be
liable to you for any consequential, incidental or indirect damages (including damages for loss of business profits, busi-
ness interruption, loss of business information, and the like) arising out of the use or inability to use the software even if
Apple�s licensor has been advised of the possibility of such damages. Because some jurisdictions do not allow the exclu-
sion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. Apple�s
liability to you for actual damage from any cause whatsoever, and regardless of the form of the action (whether in con-
tract, tort (including negligence), product liability or otherwise), will be limited to $50.

Contents

What is XTLite 1
For the QuarkXPress User 1
For the Programmer 1
How XTLite Works 2

How to Write an XTLite Bulb 3
Tools you Need 3
Things you Need to Know 4

Type Definitions 5

Data Structures 7

Tutorials 7
Setting Up Metrowerks Code Warrior 7

Adding Code to your Bulb 8

Writing a Word Processing Filter 9

Adding a Menu Item 15

Trapping/Posting User Events 16

Required Routines 17
endread() 18

endwrite() 19

idlecall() 20

menucall() 21

readtext() 22

setupfilter() 23

setupidle() 24

setupmenu() 25

startread() 26

startwrite() 27

writetext() 28

Optional Routines 29
deletetext() 30

getparaattribute() 31

gettext() 32

gettextattribute() 33

gettextinfo() 34

inserttext() 35

istextboxcurrent() 36

readchar() 37

setparaattribute() 38

settextattribute() 39

Contents

Optional Routines continued... 29
settextselection() 40

turnofftextselection() 41

Technical Support 43
America OnLine 43

AppleLink 43

CompuServe 43

Internet 43

Becoming an XTension Developer 45
Differences between XTLite Bulbs
and XTensions 45
Availability 45

How to become Certified 46

Cost 46

Sample Routines 47
Opcodes 47

Alphanumeric Routines 48

Error Handling Routines 48

Dialog and Window Routines 48

Menu Handling Routines 49

Text Routines 49

Style Sheets and H&J Routines 49

Import and Export Routines 50

System Routines 50

File Handling Routines 50

Network Communication Routines 50

Hidden Text Routines 50

Utility Routines 51

Box Routines 51

Box Grouping Routines 51

Spread and Page Routines 52

Guideline Routines 52

Color Routines 52

Additional Information 53
Ground Mail Address 53

Electronic Mail 53

Fax 53

Application 53

What is XTLite ?

For the QuarkXPress User

Custom Features: With XTLite you can add custom features to QuarkXPress
through software code modules called Bulbs.

� Bulbs: A Bulb is created using XTLite routines and data structures. These routines act
as a hooks into QuarkXPress and facilitate communication between QuarkXPress and
the Bulb you write.

Free: XTLite is publically available software, provided free of charge from Quark Inc.

For the Programmer

Easy: We have designed the XTLite interface to give you quick and easy programming
access to some of the more common features of QuarkXPress, such as creating word
processing filters, adding menu items, and handling AppleEvents.

W ritten in C: A common programming language in use today.

Native Power Macintosh Code: Any Bulb that you create with the Power
Macintosh version of XTLite takes advantage of the native Power Macintosh environment.
This means faster, more efficient code, in a state of the art hardware environment.

Flexibility: If you do not have access to the Power Macintosh version of QuarkXPress,
but do have access to a Macintosh version of QuarkXPress, you may write Bulbs that
run in emulated mode using the XTLite for Macintosh toolkit. This toolkit includes the
same files, and samples, but are created with Think C for Macintosh, and will run with
any Macintosh version of QuarkXPress. This toolkit is available on CompuServe and
America On Line - see the section titled �Technical Support� for information about how to
find this software.

Free: XTLite technology is available to give you a free opportunity to experiment with
QuarkXPress� underlying data structures and routines. By writing software that adds cus-
tom features and enhancements to QuarkXPress, you can see if you�re interested in writ-
ing more complex software modules.

XTension Technology: If you become interested in writing more complex modules,
you may become a Quark Certified XTension Developer, and receive information about
and programming access to QuarkXPress through QuarkXTensions technology. The
XTension interface is very similar to the Bulb interface, but incorporates more than 750
additional routines and data structures.

XTension Advantage: Currently, the worldwide Quark developer network has pro-
duced over 200 QuarkXPress and Quark Publishing Systemfi commercial XTensions.The
benefits of becoming a Certified XTension Developer range from receiving free copies of
Beta and Gamma Quark products to having access to an XTension marketing and supply
company called XChange (for more information see the chapter titled, �Becoming an
XTension Developer�).

XTLite User’s Guide and Getting Started Manual Page 1 Power Macintosh

What is XTLite ?

How XTLite Works

� In general, XTLite Bulbs are individual code modules consisting of eleven XTLite
required routines, four XTLite data structures, and any other routines you choose to add.

QuarkXPress sends information to your Bulb via automatic calls to the XTLite rou-
tines. These routines are called by QuarkXPress at different times while it is running.
When a routine is called, any code that you added to the body of the routine in your Bulb
will be executed. When the code segment has been run, control is automatically passed
back to QuarkXPress. Information can also be sent from your Bulb to QuarkXPress via
the parameters in the XTLite routines. This process is invisible to the user, so your Bulb
acts like an integrated part of QuarkXPress.

Specifically: QuarkXPress, on launch, loads any Bulb in its home folder and calls the
three XTLite routines: setupfilter(), setupidle(), and setupmenu(). At this time, any code
in these three routines is executed. For example, in the sample Bulb MenuShell, the
setupmenu() routine returns a value of TRUE, and passes a string �Sample XTLite Menu
Item� to QuarkXPress. QuarkXPress then sets up �Sample XTLite Menu Item� as a menu
item in the Utilities menu. If at some point the user selects �Sample XTLite Menu Item�,
QuarkXPress will call another XTLite routine menucall(). Any code in body of the
menucall() routine, that you may have added to the Bulb, will then be executed.

� Communication between XTLite and QuarkXPress is facilitated by:

Eleven Required XTLite Routines that can be used to:
- Read/write text to and from QuarkXPress using a word processing filter
- Set up and display menus
- Link into the main event loop of QuarkXPress, to trap/post events, such as a

�mouseUp event�.

Twelve Optional Routines that can:
- Check the status of a text box
- Get information about text
- Insert and delete text
- Set and get text attributes
- Set and get paragraph attributes.

Four QuarkXPress Data Structures that can be used to:
- Set text attributes such as font, face, style, size, etc.
- Set tab justification to be LEFT, RIGHT, CENTER, and ALIGNED
- Set leading to be relative or absolute
- Set paragraph attributes such as indentation, justification, etc.

� For More Information: The remainder of this manual includes details about how the
XTLite routines work, in what context they should be used, and how to obtain more pow-
erful ways to communicate with QuarkXPress.

XTLite User’s Guide and Getting Started Manual Page 2 Power Macintosh

How to Write an XTLite Bulb

Tools you Need

� The Power Macintosh XTLite toolkit:

- XTLite for Power Macintosh User�s Guide and Getting Started Manual: the file
you are currently reading.

- XTLite.lib: the Metrowerks pre-compiled library file.

- XTLite.h: the Metrowerks header file that contains a list of XTLite routines and data
structures to use in your Bulb.

- Five Sample XTLite Bulbs: each of which is a complete Metrowerks Code Warrior
project:

Sample XTLite: adds an import/export filter

FilterShell: adds an import/export filter

MenuShell: demonstrates adding a menu item

Event Shell: demonstrates trapping and posting user events

Display Chunks: demonstrates text chunk manipulation (see the section
titled �Writing a Word Processing Filter� for more information about

text chunks).

The sample XTLite Bulbs can be used to get you started. We suggest you study
these examples and modify the code to make your own Bulb. For more information
see the section titled �Adding Code to your Bulb�.

QuarkXPress: The Bulb you create will add custom features to QuarkXPress. To run
your Bulb in native mode on a Power Macintosh, you must have a copy of QuarkXPress
for Power Macintosh. If you have a copy of QuarkXPress for Macintosh, that is not a
native Power Macintosh version, you may write Bulbs using the XTLite for Macintosh
toolkit (see the section titled �What is XTLite?�).

Metrowerks Code Warrior Compiler: The XTLite library files were compiled
with Code Warrior. We currently recommend you use this compiler to create native Power
Macintosh Bulbs.

Inside Macintosh Reference Library (Recommended): Throughout the
remainder of this guide references will be made to information contained in this library.

XTLite User’s Guide and Getting Started Manual Page 3 Power Macintosh

How to Write an XTLite Bulb

Things you Need to Know

Knowledge of the C Programming Language: All sample Bulbs are written in
C. To create your own Bulbs you will add C code to the sample Bulbs.

Macintosh Programming Experience: In order to trap/post user events, and
manipulate dialog boxes it is helpful to be familiar with Macintosh Toolbox calls. Almost
any Macintosh Toolbox routine can be used in your Bulb. For more information see
�Inside Macintosh�.

Familiarity with the QuarkXPress Interface: The more familiar you are with
the QuarkXPress interface, the easier it will be for you to decide which features of XTLite
you want to incorporate into your Bulb.

Type Definitions

� QuarkXPress uses its own type definitions that may be different from the standard C type
definitions that you are used to working with. Listed below are standard C type definitions
with the corresponding type definitions you should use when writing XTLite Bulbs.

XTLite uses Macintosh Fixed notation. For more information see the section titled �Adding
Code to your Bulb�, or �Inside Macintosh�.

Standard C Type Definitions XTLite Type Definitions

char int8

short,int int16

long int32

unsigned char uchar

unsigned short, unsigned int uint16

Boolean bool8

unsigned long uint32

short double float64

double float80

XTLite User’s Guide and Getting Started Manual Page 4 Power Macintosh

How to Write an XTLite Bulb

Data Structures - Alphabetical with Description

� There are four XTLite Data Structures that control Leading, Paragraph Attributes, Tab
Placement, and Text Attributes. For more information about specific use of these struc-
tures see the �Writing a Word Processing Filter� section.

Leading Control Structure: The structure that controls leading consists of a rela-
tive vs. absolute bit. To set the leading to relative, set this bit to 1; otherwise set it to zero,
and leading will be absolute.

/* Leading Control Structure */

typedef struct {
unsigned int16 relative : 1; /* Leading is relative (vs. absolute) */
} filterparabits;

Paragraph Attributes Structure incorporates information from the Tab Align and
Leading structures, with some additional fields.

- The just field indicates the justification that should be used for this paragraph.
- The leftindent and rightindent fields are indentation amounts from each side, in

points.
- The firstindent field is the amount the first line of this paragraph should be indented.
- The leading field is the leading amount for this paragraph, in points.
- The spcbefore and spcafter fields are, in points, the amount of space that should be

left between this paragraph and those that precede and follow it.

/* Paragraph Attributes Structure */

typedef stuct {
filterparabits a; /* bool8 attributes from the Leading structure */
Byte just; /* LEFT, CENTER, RIGHT, JUSTified */
Fixed leftindent; /* Left Indent (relative to column/box left edge) */
Fixed firstindent; /*First Line Indent (relative to �leftindent�) */
Fixed rightindent; /* Right Indent(relative to column/box rightedge) */
Fixed leading; /* 0 means �auto� leading */
Fixed spcbefore; /* Space Before paragraph */
Fixed spcafter; /* Space After paragraph */
filtertabspec tabs[MAXTABS]; /* User tabs from the Tab Placement struct */

} filterparaattrib;

Tab Placement Structure controls tab justification, alignment, lead characters, and
tab indents.

- Tab justification can be set to either left, right, center or character-aligned justification
using the tabjust field.

- When the tabjust field is set to TABALIGNON, the alignon field can be used to set the
alignment character (such as a decimal point).

- Use the tablead field to insert a leader before each tab, such as spaces or dots.
- The tabindent field is the amount a particular tab is indented, in points.

XTLite User’s Guide and Getting Started Manual Page 5 Power Macintosh

Data Structures - Alphabetical with Description

/* Tab Placement Structure */

typedef struct{
Byte tabjust;/* TABLEFT, TABCENTER, TABRIGHT, TABALIGNON */
Byte alignon; /* byte to align on when TABALIGNON */
unsigned int16 tablead; /* Two characters to fill tab with */
Fixed tabindent; /* Offset to tab */

} filtertabspec;

Text Attributes Structure includes information about fonts, style (face), font size,
horizontal scaling, shading, kerning and tracking.

- The font field contains the QuarkXPress font ID number of the text.
- The face field controls style attributes such as bold, italic, etc.
- The size field is a fixed number that indicates the point size of the type.
- The hscale field is the horizontal scaling of the text, from 25 to 400%.
- The shade field indicates the shading of the text color, from 0 to 100%.
- The kern and track field each represent the kerning and tracking of the text, in frac-

tional 200ths of an em space.
- To change the value of the font, size, hscale, shade, kern or track fields, change the

value field in the data structure.
- To set a particular face attribute, logically �OR� it with the current face. For example,

to set the text face to BOLD,
textface |= BOLD;
to turn bold off,
textface &= ~BOLD;

/* Text Attributes Structure */

typedef struct {
int16 font; /* Font id */
int16 face; /* Face (style) flags */
Fixed size; /* Font size */
Fixed hscale; /* Horizt. scale factor(1.0 is 100%) */
Fixed shade; /* 1.0 is 100% */
Fixed kern; /* Fractional 200ths em */
Fixed track; /* Fractional 200ths em */

} filtertxtattrib;

XTLite User’s Guide and Getting Started Manual Page 6 Power Macintosh

Tutorials

Setting up Metrowerks Code Warrior

� Setting Preferences: When writing a Bulb, you must set the preferences listed
below in your copy of the Code Warrior compiler. You can set preferences in the
Edit->Preferences menu, or click on the Preferences icon on the toolbar.

Change: the Language, Processor, Linker, and Project preferences as listed below.

Language Preferences: By clicking on the Language icon, the Language options
appear. We recommend you set the Source Model popup menu to �Apple C�. In the
Prefix File box type in the name �MacHeaders�.

Processor Preferences: Clicking on the Processor icon, brings up the Processor
options. The only box that you should check (for debugging purposes) is the Peephole
Optimizer checkbox. This option tells the compiler to customize instruction scheduling. In
order for the compiler to align data on 2-byte boundaries, you must set the Struct
Alignment pop up menu to 68K.

� Linker Preferences: To make the Linker preferences appear, click on the Linker
icon. Within the Link Options group box, check all the boxes except Generate Link
Map. In the Entry Points box, make the Initialization text box blank, enter � xtmain� in
the Main text box, and make the Termination text box blank. Checking the Generate
SYM File and the Use Full Path Names boxes tells the compiler to generate a SYM file
for all project files, with the full path name of your Bulb (this is the symbol table you can
use for debugging). You may also check the Faster Linking box to increase linking
speed by storing all objects generated during a compile in memory.

Project Preferences: To make the Project preferences appear, click on the Project
icon. Change the Project type popup menu to �Shared Library�. Next, type in the name of
your Bulb in the File Name text box, and make sure the Creator is �XPR3� and the Type
is �CUST�.

�XPPC� Resource: When you run XPress with your XTension loaded, an �XPPC�
resource will be created if one did not already exist. This is a resource that is 8 bytes
long with an ID of 0. The name of this resource is the name that will appear in the
QuarkXPress Environment dialog (hold down Option key when selecting About
QuarkXPress from the Apple menu). All native Bulbs will appear in the Environment dia-
log box with a �+� before their names.

Debugging: To debug your Bulb, you must correctly set your Code Warrior prefer-
ences, and you include a �period� (.) under the �bug� icon in the source files you wish to
manipulate with the debugger.

For More Information about the Language, Processor, Linker, Project or any other
preferences, or information about debugging, please see the Code Warrior instruction
manual. For information about creating a Bulb on a Power Mac that runs in emulated
mode, please see the documentation included in the XTLite Macintosh toolkit.

XTLite User’s Guide and Getting Started Manual Page 7 Power Macintosh

Tutorials

Setting up your Bulb

1. Review the Sample Bulbs, they illustrate how the routines should be used. Take
code from the samples and use it in your own Bulb.

2. Review the XTLite.h header file included in this toolkit to become familiar with the
QuarkXPress type definitions, XTLite routines, and the XTLite data structures.

3. Set up your Metrowerks Code Warrior Project as show above.

4. Include all Eleven of the Required XTLite Routines, because QuarkXPress
will expect to be able to call them. Therefore, you must include all eleven, even if you do
not add code to some of them (see the sample files for an example of how this is done).
If you fail to include all eleven required XTLite routines, your Bulb MAY NOT WORK!

5. Use the Optional Routines to help simplify the process of writing a Bulb.

6. A Bulb is not Limited to the eleven required and twelve optional routines, add your
own routines as you see fit.

7. Fixed Notation: Some items in the header file use Fixed notation. These are 4-byte
values that contain both the integer and fixed portions of a decimal number. Fixed values
are stored as 2-byte integer part and 2-byte fractional part. When using fixed fields, the
integer portion must be in the upper 16 bits of the variable. For example, to set leading to
12 points, write:

myparaattribs.leading = 12L<<16;

By shifting 12 to the left 16 bits, you have stored 12 in the Hiword (or integer portion) of
myparaattribs.leading. See �Inside Macintosh� for additional documentation on fixed nota-
tion.

8. Each XTLite Filter can accommodate only one file type, so you must write a different
Bulb for each file type.

9. Each XTLite Bulb can accommodate only one menu item, so you must write a differ-
ent Bulb for each additional menu item.

10.In order for QuarkXPress to run your Bulb, put it in the folder with XPress. On
launch QuarkXPress will automatically load your Bulb.

11.QuarkXPress can run a total of 50 Bulbs and XTensions. If you exceed this number,
they will not be loaded correctly, and may not run.

12.For More Information: See the section in this document titled �Technical Support�.

XTLite User’s Guide and Getting Started Manual Page 8 Power Macintosh

Tutorials

W riting a Word Processing Filter

� A Description and Example of each routine appears in the section titled �Required
Routines�, it may be helpful to review this information before reading the following sec-
tions.

For More Information see the sample Bulbs.

W ord Processing Filters are code modules that allow QuarkXPress to read and
write a variety of text formats.

Across Computer Platforms: You may write filters that read and write text across
platforms (for example, read text from a Windows word processing file into the Power
Macintosh version of QuarkXPress).

Add Code to the Filtershell Sample Bulb To write a word processing filter, you
will need to add your own code to the seven routines setupfilter(), startread(), read-
text(), endread(), startwrite(), writetext(), and endwrite(); and manipulate four data
structures in the Filtershell Sample Bulb.

1. Set up your Metrowerks Code Warrior Project as shown in the previous section.

2. Write a setupfilter() routine to install the filter.
QuarkXPress will call this routine automatically once at startup.
Set the variables fcreator, and ftype to be the four-character Macintosh file types (for
example, �TEXT�, or �XDOC�) that refer to the file creator that you want to read, and
the file type of the document (see �Inside Macintosh� for an explanation of Macintosh
file types).
Set the variable importok to TRUE if you can read the file format, and set exportok to
TRUE if you can write the file format; set them to FALSE otherwise.
Set the two strings, getstr and savestr, to be the strings that you want to appear in
the �Get Text ...� and �Save Text...� Dialog boxes.
The fextension field is the three character file extension of a text import file (the .ABC
extension from DOS). If your filter does not use DOS files, pass this value as NULL.

XTLite User’s Guide and Getting Started Manual Page 9 Power Macintosh

W riting a Word Processing Filter

Example:
void setupfilter(OSType *fcreator,OSType *ftype,bool8 *importok,bool8 *exportok, Str255 getstr,
Str255 savestr, Str255 fextension)
{

fcreator = OURTEXTCREATOR; / set up file creator information */
ftype = OURTEXTTYPE; / set up file type information */
*importok = *exportok = TRUE; /* we can import and export this format */
GetIndString(getstr,STRINGRESID,IMPORTSTRID); /* get �Get Text� String */
GetIndString(savestr,STRINGRESID,EXPORTSTRID); /* get �Save Text� String */

maxtabs = maxnumoftabs(); /* always get the maximum number of tabs */
}

3. Write a startread() routine
� When called, this routine will initialize variables and open the necessary files to start

importing text. The example below shows the global storage set up and allocation
that may be needed.
QuarkXPress will call this routine each time the user chooses �Get Text...� from the
file menu, and selects your file type from the dialog box..
Decide what kind of global storage your filter will need, and whether you will need to
allocate buffers, etc.
Do all setup, allocation, and initialization during startread()
On entry, fnum will contain the file reference number that is automatically assigned to
each file. The file reference number is used a reference, don�t open this file,
QuarkXPress will do this for you.

XTLite User’s Guide and Getting Started Manual Page 10 Power Macintosh

W riting a Word Processing Filter

Example:
void startread(int16 fnum)
{

int16 i;

mytextattr = (filtertxtattribptr)NewPtr(sizeof(filtertxtattrib));
myparaattr =(filterparaattribptr)NewPtr(sizeof(filterparaattrib)

+maxtabs*sizeof(filtertabspec));

mytextattr->font = helvetica; /* set text to 12 point helvetica */
mytextattr->Face = PLAIN /* set text to plain style */
mytextattr->size = 12L<<16; /* point size is fixed notation, so << 16 */
mytextattr->kern = 0L; /* auto kerning */
mytextattr->shade = 0x00010000; /* 100% shade color */
mytextattr->hscale = 0x00010000; /* 100% horizontal scaled text */
mytextattr->track = 0L;

myparaattr->relative = FALSE; /* not relative leading */
myparaattr->just = LEFT; /* left justified text */
myparaattr->leftindent = 0L; /* no left indent */
myparaattr->firstindent = 0L; /* no first line of paragraph indent */
myparaattr->rightindent = 0L; /* no right indent */
myparaattr->leading = 0L; /* 0 means auto leading */
myparaattr->spcbefore = 0L; /* no space before or after paragraphs */
myparaattr->spcafter = 0L;

/* tabs every .5 inches (all -1L means default)...*/
for (i = 0; i < maxtabs; i++)

myparaattr->tabs[i].tabindent = -1L;

thetextcolor.red = 0; /* text color is black */
thetextcolor.green = 0;
thetextcolor.blue = 0;

filebuffer = (unsigned int8 *)NewPtr(BUFSIZE);
remaining = doffset = 0;

}

4. Write a startwrite() routine
� QuarkXPress will call this routine when the user chooses �Save Text...� from the File

menu, and selects your text format.
Use this routine set up any global data structures you will need and initialize any vari-
ables.
Note that fnum is used the same way as with startread().

XTLite User’s Guide and Getting Started Manual Page 11 Power Macintosh

W riting a Word Processing Filter

Example:
void startwrite(int16 fnum)
{

mydlog = GetNewDialog(20000,0,(WindowPtr) -1L);
displaywind = TRUE;
ShowWindow(mydlog);

}
5. Write a readchar() routine

� QuarkXPress will call the readchar() routine to read one character at a time from the
file buffer.
The variable fnum is the file reference number that is automatically assigned to the
file.
The example code below can be used to fill a buffer with characters, and return one
character at a time using readchar().

Example:
void readchar(int16 fnum)
{

int16 err;

if (remaining == 0) {
/* if buffer is empty then read a buffer full */

remaining = BUFSIZE;
err = FSRead(fnum,&remaining,filebuffer);
if (err && !remaining) {

if (err != eofErr) return (err);
return (0xFF);

}
doffset = 0;

}
remaining�;
return(filebuffer[doffset++]);

}
6. Write your readtext() routine

� Your filter will import text using the readtext() routine, and will export text using the
writetext() routine.

� readtext() and writetext() routines will be repeatedly called as long as there is text to
read or write.

A text run is a series of characters with identical attributes (i.e. font, size, color). A
text run automatically ends when either a text attribute changes, the maximum num-
ber of 256 characters is read, or the end of a paragraph is reached, marked �\r�. If the
textbuffer consists of 256 characters, it is referred to as a Chunk.

� If a text run is longer than 256 characters, return it one chunk at a time. When you
have filled your buffer with a text run, set the text attributes and return the buffer
(along with the character count) in textbuffer (For more information see the Display
Chunks sample Bulb).

QuarkXPress will call the readtext() routine to read a text run from the source file and
import it into QuarkXPress in the data structures provided.

XTLite User’s Guide and Getting Started Manual Page 12 Power Macintosh

W riting a Word Processing Filter

� Import the attributes of the text using the textattribs and paraattribs data structures.

� Import the text color in the textcolor record as an RGB bvalue. QuarkXPress will con-
vert the RGB bvalue into the closest matching QuarkXPress color (there are 8 such
colors: red, green,blue, yellow, black, cyan, magenta, and white). For more informa-
tion about the RGB structure see �Inside Macintosh�.

The count parameter should contain the number of characters in the textbuffer. When
you are finished reading text, set the count parameter to 0.

� The fnum parameter contains the file reference number for use with the Macintosh
File Manager routines.

Example:
void readtext(int16 fnum,Str255 textbuffer,int32 *count,
filtertxtattrib *textattribs,filterparaattrib *paraattribs,RGBColor *textcolor)
{

int8 ch;
int16 i;

i = 0;
while (TRUE) {

ch = readchar(fnum); /* See readchar() above */
/* Handle the characters you read here */
if (ch >= � � || ch == �\t� || ch == �\r�)

textbuffer[i++] = ch;
if (ch == �\r� || i == 256) break;
else if (ch == -1) break;

}
/* set the text attributes before returning */
textattribs->font = mytextattr->font;
textattribs->face = mytextattr->face;
textattribs->size = mytextattr->size;
textattribs->hscale = mytextattr->hscale;
textattribs->shade = mytextattr->shade;
textattribs->kern = mytextattr->kern;
textattribs->track = mytextattr->track;
paraattribs->relative = myparaattr->relative;
paraattribs->just = myparaattr->just;
paraattribs->leftindent = myparaattr->leftindent;
paraattribs->firstindent = myparaattr->firstindent;
paraattribs->rightindent = myparaattr->rightindent;
paraattribs->leading = myparaattr->leading;
paraattribs->spcbefore = myparaattr->spcbefore;
paraattribs->spcafter = myparaattr->spcafter;
BlockMove(paraattribs->tabs,myparaattr->tabs,
maxtabs*sizeof(filtertabspec));

textcolor->red = thetextcolor.red;
textcolor->green = thetextcolor.green;
textcolor->blue = thetextcolor.blue;

count = i; / tell QXP how many characters are in the text buffer */
}

XTLite User’s Guide and Getting Started Manual Page 13 Power Macintosh

W riting a Word Processing Filter

7. Write your writetext() routine.
� Use this routine to write out your text data.
� QuarkXPress will call the writetext() routine as long are there are characters to be

written out.
The fnum parameter contains the file reference number for use with the Macintosh
File Manager routines.
textbuffer contains the characters that need to be written out.

� count contains the number of characters in textbuffer.
� textcolor is an RGB value that matches the color of the text being written.

NOTE: textbuffer is NOT a Pascal string, begin writing from textbuffer[0].
Example:
void writetext(int16 fnum,Str255 textbuffer,int32 count,filtertxtattrib *textattribs,filterparaattrib
*paraattribs,RGBColor *textcolor)
{

int8 ch;
int16 i,j;
int32 size;
int16 fserr;
Str255 tempbuffer;

for (j = i = 0; i < count; i++) {
ch = textbuffer[i];

/* Remember to filter special characters here, See the Sample XTLite Bulb */
}
size = j;
fserr = FSWrite(fnum,&size,tempbuffer);

}
8. Deallocate your buffers with endread().

The endread() function is automatically called when you are finished reading text and
have set the count parameter in readtext() to 0.

� Dispose of any storage that you had previously allocated as shown in the example
below.

Example:
void endread(int16 fnum)
{

if (filebuffer) DisposPtr((Ptr)filebuffer);
DisposePtr((Ptr)mytextattr);
DisposePtr((Ptr)myparaattr);

}
9. De-initialize your variables with endwrite().

� Call the endwrite() function at the end of text export to de-initialize variables.
� Dispose of any storage that you had previously allocated as shown in the example

below.

Example:
void endwrite(int16 fnum)
{

int32 size;
int16 fserr;

DisposeDialog(mydlog);
}

10. For more information see the section in this document titled �Technical Support�.

XTLite User’s Guide and Getting Started Manual Page 14 Power Macintosh

Tutorials

Adding a Menu Item

Items are Added to the Utilities Menu XTLite gives you the ability to add a
menu item to the Utilities menu of QuarkXPress.

Add Code to the MenuShell Sample Bulb To add a menu item you will need to
add your own code to the two routines setupmenu() and menucall().

� One Menu Item per Bulb Each Bulb may add only one menu item.Write an addi-
tional Bulb for each menu item you need to add. The maximum number of Bulbs you can
add to QuarkXPress is 50.

1. Set up your Metrowerks Code Warrior project as shown in the previous section.

2. Add your own MENUSTRID to setupmenu()

3. Return TRUE in setupmenu()
This routine is called once at the startup of QuarkXPress to determine if your Bulb will
add a menu item in the Utilities menu.
The variable menustr should contain the text, that will appear to the user, of the menu
item.
Set setupmenu() to TRUE if you want to add your own menu item and FALSE other-
wise.
The routine GetIndString() is a Macintosh toolbox call that gets the menu name text
string from a resource.

Example:
bool8 setupmenu(Str255 menustr)
{

GetIndString(menustr,STRINGRESID,MENUSTRID); /* get �Menu� String */
return (TRUE);

}

4. Write your own menucall() routine
This routine is called each time the user selects your menu item from the Utilities
menu.
At this point, the code you write in this routine will be activated.

Example:
void menucall(void)
{
/* Put you own code here! */

SysBeep(1);
}

5. For more information see the section in this document titled �Technical Support�.

XTLite User’s Guide and Getting Started Manual Page 15 Power Macintosh

Tutorials

Trapping and Posting User Events

� User Events can be Trapped: The XTLite interface allows user events to be
trapped before they are sent to QuarkXPress.

Add Code to the EventShell Sample Bulb: XTLite traps events through the
use of the routines setupidle() and idlecall().

1. Set up your Metrowerks Code Warrior compiler as previously shown.
2. Set the value of setupidle() to TRUE

� This routine is called once at the startup of QuarkXPress to determine if your Bulb
wants to handle Idle calls.
Set the value of setupidle() to TRUE if you want to handle Idle calls, and FALSE oth-
erwise.

Example:
bool8 setupidle(void)
{

return(TRUE) /* Idle calls will be handled */
}

3. Write your own idlecall() routine
� QuarkXPress calls this routine each time it cycles through its main event loop, which

is approximately three times a second, but in some cases there may be long delays.
For instance, if an alert appears, you won�t receive idle calls until the user clicks OK.
Whatever code you have in the idlecall() routine will be activated during each pass.

� The Macintosh EventRecord is passed into this routine, which lists the most recent
user event that has occurred.
The example code below demonstrates the trapping of the �mouseDown� event.
See �Inside Macintosh� for a complete listing of items in the EventRecord structure.

� The example idlecall() demonstrates the trapping of the �mouseDown� event.
Example:
void idlecall(EventRecord *myevent)
{

/* Insert your code here */
if(myevent->what == mouseDown)

SysBeep(0);
}

4. Use PPostEvent in idlecall()
� To post user events, call the Macintosh toolbox routine PPostEvent() from idlecall().
� PPostEvent() will post the event and return a pointer to the event queue.
� The following sample code demonstrates how to post the keyboard event Command

�K�.
Example:
#define KELLEQUIV 0x4B /* Post a Command �K� */

/* need variable ...*/
EvQE1 *eventqueue;
/*post event and return pointer to event queue... */
PPostEvent(keyDown, (int32)KILLEQUIV, &eventqueue);
/* set command key modifier... */
eventqueue->evtQModifies = cmdKey;

5. For more information see the section in this document titled �Technical Support�.

XTLite User’s Guide and Getting Started Manual Page 16 Power Macintosh

Routines

Required Routines

Include all Eleven of these Routines in your Bulb, even if you do not add any
code to them (for more information see the section titled �Adding Code to your Bulb�).

Each Routine is listed in this section alphabetically, and is categorized as either a
Word Processing, Menu Item, or User Event routine.

For More Information and an example of how to use each routines, see the cor-
responding section in the chapter titled �Tutorials�.

Routine Prototype Page Number

endread() void endread(int16 fnum) 18

endwrite() void endwrite(int16 fnum) 19

idlecall() void idlecall(EventRecord *myevent) 20

menucall() void menucall(void) 21

readtext() void readtext(int16 fnum, Str255 textbuffer,
int32 * count, filterxtattribs *textattribs,
filterparaattribs *paraattribs,RGBColor *paraattribs) 22

setupfilter() void setupfilter(OSType *fcreator, OSType *ftype,
bool8 *exportok, Str255 getstr, Str255 savestr,
Str255 fextension) 23

setupidle() bool8 setupidle(void) 24

setupmenu() bool8 setupmenu(Str255 menustr) 25

startread() void startread(int16 fnum) 26

startwrite() void startwrite(int16 fnum) 27

writetext() void startwrite(int16 fnum) 28

XTLite User’s Guide and Getting Started Manual Page 17 Power Macintosh

Required Routines

endread() W ord Processing

Synopsis
void endread(int16 fnum)

Description
Add code to this routine to deallocate the buffers used to read text into QuarkXPress.

QuarkXPress will automatically call this routine when you are finished reading text, and have
set the count parameter in readtext() to 0.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Example

void endread(int16 fnum)
{

if (filebuffer) DisposPtr((Ptr)filebuffer);
DisposePtr((Ptr)mytextattr);
DisposePtr((Ptr)myparaattr);

}

See Also
endwrite(), readtext()

XTLite User’s Guide and Getting Started Manual Page 18 Power Macintosh

Required Routines

endwrite() W ord Processing

Synopsis
void endwrite(int16 fnum)

Description
Add code to this routine to deallocate the buffers used to write text from QuarkXPress.

QuarkXPress will automatically call this routine when you are finished writing text, and have
set the count parameter in writetext() to 0.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.
Example

void endwrite(int16 fnum)
{

int32 size;
int16 fserr;

DisposeDialog(mydlog);
}

See Also
endread(), writetext()

XTLite User’s Guide and Getting Started Manual Page 19 Power Macintosh

Required Routines

idlecall() User Event

Synopsis
void idlecall(EventRecord *myevent)

Description
Add your own code to this routine to trap events from EventRecord, and post events with
the toolbox call PPostEvent().

QuarkXPress will call this routine each time it cycles through its main event loop (approxi-
mately 3 times per second, although long delays can occur).

Entry
myevent The Macintosh EventRecord that lists the most recent user event

that has occurred.

Exit
myevent The Macintosh EventRecord.

Example

void idlecall(EventRecord *myevent)
{

/* Insert your code here */
if(myevent->what == mouseDown)

SysBeep(0);
}

Caveats
See �Inside Macintosh� for more information about the Macintosh EventRecord.

See Also
setupidle()

XTLite User’s Guide and Getting Started Manual Page 20 Power Macintosh

Required Routines

menucall() Menu Item

Synopsis
void menucall(void)

Description
The code you add to this routine will be executed each time the user selects the menu item
set up with the routine setupmenu().

QuarkXPress will call this routine each time the user selects the setupmenu() menu item.

Entry
None.

Exit
None.

Example

void menucall(void)
{
/* Put you own code here! */

SysBeep(1);
}

See Also
setupmenu()

XTLite User’s Guide and Getting Started Manual Page 21 Power Macintosh

Required Routines

readtext() W ord Processing

Synopsis
void readtext(int16 fnum, Str255 textbuffer, int32 *count, filterxtattribs *textattribs,
filterparaattribs *paraattribs, RGBColor *paraattribs)

Description
Use this routine to import text into QuarkXPress from a source file.

QuarkXPress will call this routine each time the user selects �Get Text...� with your file
import type selected.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.
Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.
textbuffer This buffer of text that is to be read into QuarkXPress.
count The number of characters in textbuffer.
textattribs The text attributes data structure.
paraattribs The paragraph attributes data structure.
textcolor The text color data structure (the RGB structure in �Inside

Macintosh�).

Example
void readtext(int16 fnum,Str255 textbuffer, int32 *count,
filtertxtattrib *textattribs, filterparaattrib *paraattribs,
RGBColor *textcolor)
{

int8 ch;
int16 i;

i = 0;
while (TRUE) {

ch = readchar(fnum); /* See readchar() above */
/* Handle the characters you read here */
if (ch >= � � || ch == �\t� || ch == �\r�)

textbuffer[i++] = ch;
if (ch == �\r� || i == 256) break;
else if (ch == -1) break;

}
/* initialize all text attributes here */
/* initialize all paragraph attributes here */

BlockMove(paraattribs->tabs,myparaattr->tabs,
maxtabs*sizeof(filtertabspec));

/* initialize all text color attributes here */

count = i; / tell QXP how many characters are in the text buffer */
}

See Also
writetext()

XTLite User’s Guide and Getting Started Manual Page 22 Power Macintosh

Required Routines

setupfilter() W ord Processing

Synopsis
void setupfilter (OSType *fcreator, OSType *ftype, bool8 *importok, bool8 *exportok,
Str255 getstr, Str255 savestr, Str255 fextension)

Description
Add code to this routine to setup the necessary elements of your word processing
filter.

QuarkXPress will call this routine once at startup to install your word processing filter.

Entry
None.

Exit
fcreator Set this to be the four-character Macintosh file creator.
ftype Set this to be the four-character Macintosh file type.
importok Set this to TRUE if the filter can import text, FALSE otherwise.
exportok Set this to TRUE if the filter can export text, FALSE otherwise.
getstr Set this to be the string you want to appear in the �Get Text...� QuarkXPress

dialog box.
savestr Set this to be the string you want to appear in the �Save Text...�

QuarkXPress dialog box.
fextension Use this field as the three character file extension of a text import file (i.e. the

.ABC extension from DOS). If your filter does not use DOS files, pass this
value as NULL.

Example

void setupfilter(OSType *fcreator,OSType *ftype,bool8 *importok,
bool8 *exportok, Str255 getstr,Str255 savestr, Str255 fextension)
{
fcreator = OURTEXTCREATOR; / set up file creator information */
ftype = OURTEXTTYPE; / set up file type information */
*importok = *exportok = TRUE; /* we can import/export this format */
GetIndString(getstr,STRINGRESID,IMPORTSTRID);/* �Get Text�String*/
GetIndString(savestr,STRINGRESID,EXPORTSTRID); /* �Save Text�String*/
maxtabs = maxnumoftabs(); /* get the maximum number of tabs */
}

Caveats
See �Inside Macintosh� for more information about Macintosh file types.

XTLite User’s Guide and Getting Started Manual Page 23 Power Macintosh

Required Routines

setupidle() User Event

Synopsis
bool8 setupidle(void)

Description
Use this routine to inform QuarkXPress that you want to receive idle calls.

QuarkXPress will call this routine once at startup.

Entry
None.

Exit
Function Return TRUE if your Bulb will receive idle calls (meaning the idlecall()

routine in your Bulb will be called by QuarkXPress), and FALSE oth-
erwise.

Example

bool8 setupidle(void)
{

return(TRUE) /* Idle calls will be handled */
}

Caveats
See �Inside Macintosh� for more information about receiving user events via the Macintosh
EventRecord.

See Also
idlecall()

XTLite User’s Guide and Getting Started Manual Page 24 Power Macintosh

Required Routines

setupmenu() Menu Item

Synopsis
bool8 setupmenu(Str255 menustr)

Description
Use this routine to set up the name of your menu item.

QuarkXPress will call this routine on startup to put menustr in the Utilities menu.

Entry
None.

Exit
menustr The string corresponding to your menu item that appears in the

QuarkXPress Utilities menu.

Example

bool8 setupmenu(Str255 menustr)
{

/* get �Menu� String... */
GetIndString(menustr,STRINGRESID,MENUSTRID);
return (TRUE);

}

Caveats
See �Inside Macintosh� for more information about the GetIndString() routine.

See Also
menucall()

XTLite User’s Guide and Getting Started Manual Page 25 Power Macintosh

Required Routines

startread() W ord Processing

Synopsis
void startread(int16 fnum)

Description
Use this routine to initialize any variables and open any necessary files to start importing
text.

QuarkXPress will call this routine when the user selects �Get Text...� with your file type.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Example

void startread(int16 fnum)
{

int16 i;

mytextattr = (filtertxtattribptr)NewPtr(sizeof(filtertxtattrib));
myparaattr =(filterparaattribptr)NewPtr(sizeof(filterparaattrib)
+maxtabs*sizeof(filtertabspec));

/* Initialize text attributes here ...*/

/* Initialize paragraph attributes here ...*/

/* tabs every .5 inches (all -1L means default)... */
for (i = 0; i < maxtabs; i++)

myparaattr->tabs[i].tabindent = -1L;

/* Initialize RGB color attributes here ...*/

filebuffer = (unsigned int8 *)NewPtr(BUFSIZE);
remaining = doffset = 0;

}

See Also
startwrite(), readtext()

XTLite User’s Guide and Getting Started Manual Page 26 Power Macintosh

Required Routines

startwrite() W ord Processing

Synopsis
void startwrite(int16 fnum)

Description
Use this routine to initialize any variables and open any necessary files to start exporting
text.

QuarkXPress will call this routine when the user selects �Save Text...� with your file type.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Example

void startwrite(int16 fnum)
{

mydlog = GetNewDialog(20000,0,(WindowPtr) -1L);
displaywind = TRUE;
ShowWindow(mydlog);

}

See Also
startread(), writetext()

XTLite User’s Guide and Getting Started Manual Page 27 Power Macintosh

Required Routines

writetext() W ord Processing

Synopsis
void writetext(int16 fnum, Str255 textbuffer, int32 *count, filterxtattribs *textattribs,
filterparaattribs *paraattribs, RGBColor *paraattribs)

Description
Use this routine to export text from QuarkXPress into a destination file.

QuarkXPress will call this routine each time the user selects �Save Text...� with your file
export type selected.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to set or change the value of this variable.
textbuffer This buffer of text that is to be read into QuarkXPress.
count The number of characters in textbuffer.
textattribs The text attributes data structure.
paraattribs The paragraph attributes data structure.
textcolor The text color data structure (see Inside Macintosh).

Example

void writetext(int16 fnum,Str255 textbuffer,int32 count,
filtertxtattrib *textattribs,filterparaattrib *paraattribs,
RGBColor *textcolor)
{

int8 ch;
int16 i,j;
int32 size;
int16 fserr;
Str255 tempbuffer;

for (j = i = 0; i < count; i++) {
ch = textbuffer[i];

/* Remember to filter special characters here, */
/* See the Sample XTLite Bulb */

}
size = j;
fserr = FSWrite(fnum,&size,tempbuffer);

}
See Also
readtext(), startwrite()

XTLite User’s Guide and Getting Started Manual Page 28 Power Macintosh

Routines

Optional Routines

Twelve Optional Routines: In addition to the eleven required routines that make
up the XTLite Toolbox, there are twelve optional routines available. You may use these
routine in your Bulb, or write your own version of these routines, as you see fit.

Use these routines to manipulate text and paragraph attributes, and to work with
QuarkXPress data structures.

For More Information see the example below, and the sample Bulbs included in
this toolkit.

Routine Prototype Page Number

deletetext() bool8 deletetext(int32 offset, int32 numberofchars) 30

getparaattribute() bool8 getparaattribute(int16 whichattribute,
Fixed *attribute,int32 startoffset,int32 endoffset) 31

gettext() bool8 gettext(int32 offset,
int32 numberofcharacters, uchar *textstr) 32

gettextattribute() bool8 gettextattribute(int16 whichattribute,
Fixed *attribute,int32 startoffset,int32 endoffset) 33

gettextinfo() bool8 gettextinfo(int32 selectionstart,
int32 selectionend, int32 totallength) 34

inserttext() bool8 inserttext(int32 numberofcharacters,
uchar *textstr, int32 offset) 35

istextboxcurrent() bool8 istextboxcurrent(void) 36

readchar() void readchar(int16 fnum) 37

setparaattribute() bool8 setparaattribute(int16 whichattribute,
Fixed *attribute, int32 startoffset,
int32 endoffset, bool16 redrawtext) 38

settextattribute() bool8 settextattribute(int16 whichattribute,
Fixed *attribute, int32 startoffset,
int32 endoffset, bool16 redrawtext) 39

settextselection() bool8 settextselection(int32 startoffset,
int32 endoffset) 40

turnofftextselection() bool8 turnofftextselection(void) 41

Example Using these routines 42

XTLite User’s Guide and Getting Started Manual Page 29 Power Macintosh

Optional Routines

deletetext()

Synopsis
bool8 deletetext(int32 offset, int32 numberofcharacters)

Description
This routine will delete text from the current text box.

Entry
offset Set this to be the text offset amount that you want.
numberofcharacters Set this to be the number of characters to delete.

Exit
Function Return TRUE if the text was deleted, and FALSE otherwise.

Example
See the example at the end of this section, on page 42.

See Also
gettext(), inserttext()

XTLite User’s Guide and Getting Started Manual Page 30 Power Macintosh

Optional Routines

getparaattribute()

Synopsis
bool8 getparaattribute(int16 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset)

Description
Use this routine to get the attributes of a paragraph.

Entry
whichattribute The paragraph attribute you want.
attribute Storage for the value of the attribute.
startoffset The start of the offset.
endoffset The end of the offset.

Exit
attribute The value of the attribute requested in whichattribute.
Function Return TRUE if whichattribute was returned in the attribute field; and

FALSE if the paragraph attribute could not be returned or there was
a conflict (i.e. more than one value for that paragraph attribute in the
given text range).

Example
See the example at the end of this section, on page 42.

See Also
setparaattribute()

XTLite User’s Guide and Getting Started Manual Page 31 Power Macintosh

Optional Routines

gettext()

Synopsis
bool8 gettext(int32 offset, int32 numberofcharacters, uchar *textstr)

Description
Use this routine to get text from the current text box.

Entry
offset The text offset amount that you want.
numberofcharacters The number of characters to delete.
textstr The start of the offset.

Exit
Function Return TRUE if the offset, numberofcharacters were returned from the cur-

rent box in the string textstr; and FALSE otherwise.
Example
See the example at the end of this section, on page 42.

See Also
gettextinfo(), deletetext()

XTLite User’s Guide and Getting Started Manual Page 32 Power Macintosh

Optional Routines

gettextattribute()

Synopsis
bool8 gettextattribute(int16 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset)

Description
Use this routine to get the attributes of text.

Entry
whichattribute The text attribute that you want (i.e. T_SIZE).
attribute Storage for the value of the attribute.
startoffset The start of the text offset.
endoffset The end of the text offset.

Exit
attribute The value of the attribute requested in whichattribute.
Function Return TRUE if whichattribute was returned in the attribute field; and

FALSE if the text attribute could not be returned or there was
a conflict (i.e. more than one value for that text attribute in the
given range).

Example
See the example at the end of this section, on page 42.

See Also
settextattribute()

XTLite User’s Guide and Getting Started Manual Page 33 Power Macintosh

Optional Routines

gettextinfo()

Synopsis
bool8 gettextinfo(int32 selectionstart, int32 selectionend, int32 totallength)

Description
Use this routine to get general information about the current text from the current text box.

Entry
None.

Exit
selectionstart The start of the selected text.
selectionend The end of the selected text.
totallength The total length of the text in the story.

Example
See the example at the end of this section, on page 42.

See Also
gettext(), deletetext()

XTLite User’s Guide and Getting Started Manual Page 34 Power Macintosh

Optional Routines

inserttext()

Synopsis
bool8 inserttext(int32 numberofcharacters,uchar *textstr, int32 offset)

Description
Use this routine to insert text into the current text box with the given offset.

Entry
numberofcharacters The number of characters to insert.
textstr The text string to be inserted.
offset The text offset amount.

Exit
Function Return TRUE if numberofcharacters of the string textstr were inserted into

the current box by the given offset amount; and FALSE otherwise.
Example
See the example at the end of this section, on page 42.

Caveats
The variable textstr is not a Pascal string, start reading from textstr[0].

See Also
deletetext(), gettext().

XTLite User’s Guide and Getting Started Manual Page 35 Power Macintosh

Optional Routines

istextboxcurrent()

Synopsis
bool8 istextboxcurrent(void)

Description
Use this routine to determine if a text box is currently selected.

Entry
None.

Exit
Function Return TRUE if a text box is both current selected and the current tool mode

is CONTENTS mode, and FALSE otherwise.
Example
See the example at the end of this section, on page 42.

XTLite User’s Guide and Getting Started Manual Page 36 Power Macintosh

Optional Routines

readchar()

Synopsis
void readchar(int16 fnum)

Description
Use this routine to read characters, one at a time, from a file buffer.

Entry
fnum The file reference number that is automatically assigned to the file, do not

attempt to modify it.

Exit
fnum The file reference number that is automatically assigned to the file, do not

attempt to modify it.

Example
See the sample Bulb Display Chunks.

See Also
gettext()

XTLite User’s Guide and Getting Started Manual Page 37 Power Macintosh

Optional Routines

setparaattribute()

Synopsis
bool8 setparaattribute(int16 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset,
bool16 redrawtext)

Description
Use this routine to set the attributes of a paragraph.

Entry
whichattribute The paragraph attribute that you want to set (i.e. P_LEFTINDENT)..
attribute Storage for the new attribute value (i.e. 72L<<16(1 inch)).
startoffset The start of the offset.
endoffset The end of the offset.
redrawtext Set to TRUE if you want the paragraph redrawn and FALSE other

wise.

Exit
Function Return TRUE if whichattribute was set and FALSE if the paragraph attribute

could not be set.

Example
See the example at the end of this section, on page 42.

See Also
getparaattribute()

XTLite User’s Guide and Getting Started Manual Page 38 Power Macintosh

Optional Routines

settextattribute()

Synopsis
bool8 setparaattribute(int16 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset,
bool16 redrawtext)

Description
Use this routine to set a text attribute.

Entry
whichattribute The text attribute that you want to set (i.e. T_SIZE).
attribute Storage for the new attribute value, (i.e. 72L<<16(1 inch)).
startoffset The start of the offset.
endoffset The end of the offset.
redrawtext Set to TRUE if you want the text redrawn and FALSE other-

wise.

Exit
Function Return TRUE if whichattribute was set and FALSE if the text attribute

could not be set.

Example
See the example at the end of this section, on page 42.

See Also
gettextattribute()

XTLite User’s Guide and Getting Started Manual Page 39 Power Macintosh

Optional Routines

settextselection()

Synopsis
bool8 settextselection(int32 startoffset, int32 endoffset)

Description
Use this routine to set the current text selection range, and redraw the text range.

Entry
startoffset The start of the text offset.
endoffset The end of the text offset.

Exit
Function Return TRUE if the text selection range was set, and FALSE if the text

selec-
tion range could not be set.

Example
See the example at the end of this section, on page 42.

Caveats
The turnofftextselection() routine should have been called prior to this routine to turn off the
same text.

See Also
turnofftextselection()

XTLite User’s Guide and Getting Started Manual Page 40 Power Macintosh

Optional Routines

turnofftextselection()

Synopsis
bool8 turnofftextselection(void)

Description
Use this routine to turn off the current text selection range.

Entry
None.

Exit
None.

Example
See the example at the end of this section, on page 42.

Caveats
If you use this routine, always make sure that you call the settextselection() routine after you
have finished working with text.

See Also
settextselection()

XTLite User’s Guide and Getting Started Manual Page 41 Power Macintosh

Optional Routines - Example

void idlecall(EventRecord *myevent)
{

register int32 c;
int32 start,end,amount,textlen;
Fixed kern;
int16 character;
uchar ch;
bool8 plus;

#define PLUSTRACKCHAR (30<<8) /* the + track value character �}� */
#define MINUSTRACKCHAR (33<<8) /* the - track value character �{� */

character = (*myevent).message&keyCodeMask;
if (((*myevent).what == keyDown || (*myevent).what == autoKey)

&& ((*myevent).modifiers&(controlKey+shiftKey+cmdKey)) ==
controlKey+shiftKey+cmdKey

&& (character == PLUSTRACKCHAR || character == MINUSTRACKCHAR)) {
if (istextboxcurrent()) {

gettextinfo(&start,&end,&textlen);
if (start != end) {

plus = character == PLUSTRACKCHAR;
amount = ((*myevent).modifiers&optionKey) ? 1L<<16:

10L<<16;
turnofftextselection();
for (c = start; c < end; c++) {

gettext(c,1L,&ch);
if (ch == � � && c != textlen) {

gettextattribute(T_KERN,&kern,c,c+1);
if (plus) {

kern += amount;
if

(!settextattribute(T_KERN,kern,c,c+1,FALSE)) {
SysBeep(1);
break;

}
}
else {

kern -= amount;
if

(!settextattribute(T_KERN,kern,c,c+1,FALSE)) {
SysBeep(1);
break;

}
}

}
}
settextselection(start,end);

}
else SysBeep(1);
(*myevent).what = nullEvent;

}
}

}

XTLite User’s Guide and Getting Started Manual Page 42 Power Macintosh

Technical Support for XTLite

� Peer Support for XTLite is available on America Online, CompuServe, and the
Internet.
Questions, answers, suggestions, constructive comments, and bug reports may be
posted on any of these forums.

America Online
The America Online forum for XTLite can be found by using:

Keyword QUARK
� The XTLite toolkit can be found in the following location:

Quark Software Libraries
QuarkXTensions

Macintosh XTLite.sea
Power Macintosh XTLite.sea
CopyDesk XTLite.sea

QXP-Windows XTensions

CompuServe
The CompuServe forum for XTLite can be found in

the DTP Forum or by using the the keyword: GO DTPFORUM.
� The XTLite toolkit can be located in:

DTP Forum (GO DTPFORUM)
Mac DTP Utilities (Library 5)

MACXTL.SEA (XTLite for Mac)
PMCXTL.SEA (XTLite for Power Mac)
CDKXTL.SEA (XTLite for CopyDesk)

PC DTP Utilities (Library 6)
XTLITE.ZIP (XTLite for PC)

AppleLink
There is no public forum for XTLite on AppleLink.
The XTLite toolkit can be found in the following location:

Software Sampler
3rd Party Demos/Updates
Software Updates
Companies K-R
Quark
Mac Software Libraries
XTensions

Macintosh XTLite.sea
CopyDesk XTLite.sea
Power Macintosh XTLite.sea

Internet
XTLite Listserver: A listserver exists on the Internet as a way for developers to send
and receive messages. It works as a remailing service � once you subscribe you will
receive ALL electronic mail messages any other XTLite subscriber posts on the server.
Likewise, any electronic mail message you post on the server will be remailed to ALL
other XTLite developers that have subscribed. If you want to ask a question of a specific
developer, or are uncomfortable posting your question in a widely distributed forum,
please don�t use this listserver. Send any private messages directly to the electronic mail
account of the person you want to contact.

XTLite User’s Guide and Getting Started Manual Page 43 Power Macintosh

Internet

To subscribe to the XTLite Listserver

Send the following one line message:

subscribe XTPD
to...

majordomo@csn.org

No other special commands are required.

To post a message to the XTLite Listserver

Send your message to...
XTPD@QUARK.COM

No other special commands are required.

To remove yourself from the XTLite Listserver

Send the one-line message

unsubscribe XTPD
to...

majordomo@csn.org

All commands must be sent to MAJORDOMO and NOT the list! Send ONLY mail
contributions to XTPD@quark.com The commands go in the body of the mail, and not the
subject.

Activities These public forums are designed to help XTLite developers share commu-
nity knowledge specific to XTLite development. These activities are encouraged:

- Questions regarding programming XTLite Bulbs for QuarkXPress.
- Exchange of XTLite Bulbs with other XTLite developers.
- Public discussion of ways to improve the XTLite program. Please be constructive. It is

easy to complain, but far more useful to work towards a solution.

Inappropriate Activities that will cause us to revoke your listserver subscription:

- Carping, complaining, and moaning without any intention of working towards a resolu-
tion.

- Personal messages to another developer.
- Exchange of any copyrighted materials. We assume that any material that is

exchanged over this listserver is NOT proprietary or trade secret.

For More Information: Users of XTLite who may require additional assistance
beyond the public domain forums can consider becoming a fully certified XTension devel-
oper.

XTLite User’s Guide and Getting Started Manual Page 44 Power Macintosh

Becoming an XTension Developer

Differences between XTLite Bulbs and XTensions

� An XTLite Bulb can access three features of QuarkXPress, an XTension can access
100% of the features of QuarkXPress.

A Bulb communicates with QuarkXPress only when it is called, an XTension can send
information to and receive information from QuarkXPress using special routines called
Opcodes (there are approximately 100 Opcodes in the XTensions interface).

Each Bulb can add one menu item to the Utilities menu. An XTension can add several
menu items, to any QuarkXPress menu except the File menu.

Each Bulb can handle one file type at a time, each XTension can handle multiple file
types.

XTlite consists of eleven routines to communicate with QuarkXPress, the XTension inter-
face consists of over 750 (see the following section for samples).

As an XTLite developer you receive Peer technical support, XTension developers receive
free technical support from Quark XTension programmers through electronic mail, fax,
and phone.

As an XTension developer you will receive a free subscription to a monthly technical
newsletter, which is a compilation of regular electronic developer feeds that you will
receive if you have an electronic mail account.

XTension developers are eligible to attend Quark-sponsored training camps at both inter-
national and U.S. locations.

XTension developers are eligible to receive Gamma and Beta releases of upcoming
Quark Software.

Availability

The XTension Developer Program is currently available for
- QuarkXPress for Macintosh (which includes Power Macintosh)
- QuarkXPress for Windows
- Quark Publishing System

These programs are managed by our corporate U.S. headquarters. See the section
titled �Additional Information� for the ground mail address, electronic mail address,
and FAX number.

East Asian Japanese and Korean versions of QuarkXPress, which is handled through our
Tokyo office. If you are interested in our East Asian developer program, please contact
our Tokyo office:

QMH Japan B.V., Japan Branch
5FKHO Building
3-14-16 Higashi
Shibuya-ku
Tokyo 150 Japan

XTLite User’s Guide and Getting Started Manual Page 45 Power Macintosh

Becoming an XTension Developer

� How to become Certified

- Decide which program(s) you wish to write XTensions for. Developers can be certified
for more than one platform.

- If you are interested in the Macintosh, Windows, or Quark Publishing System devel-
oper program, print the Application included in this document, fill it out, enclose the
appropriate payment, and mail it to:

U.S. QuarkXTension Developer Desk
1800 Grant Street
Denver, CO 80203

- Upon receiving your application, we will send you a Quark License agreement, and a
ten-page brochure outlining the program.

- When we receive your signed license agreement, we will review your application and
if approved you will receive an acceptance letter followed by the �Inside QuarkXPress
Developer Kit� for the platform(s) you are certified for.

Cost

The current fee (U.S.) for certification is $500. For information about the cost of East
Asian versions of QuarkXPress, contact our Tokyo office at the address above.

XTLite User’s Guide and Getting Started Manual Page 46 Power Macintosh

Becoming an XTension Developer

Sample Routines

The XTension documentation contains all of the information you need to write
your own XTensions, including sample QuarkXTensions. Listed below are some of the
types of routines that are available through the XTension interface (this is not a complete
list).

Opcodes are the commands issued to denote events. They allow you to initialize an
XTension and add it to the QuarkXPress environment, handle menu selections, and han-
dle Quark system events.

BOX_ACTIVATE
BOX_BYTESWAP
BOX_CLICK
BOX_COLOR
BOX_COLORIZE
BOX_CREATE
BOX_CURSOR
BOX_DEACTIVATE
BOX_DISPOSE
BOX_DUPLICATE
BOX_FONTINFO
BOX_IDLE
BOX_KEY
BOX_MINSIZE
BOX_MODIFY
BOX_MOVE
BOX_PRINTEND
BOX_PRINTHEADER
BOX_PRINTSTART
BOX_RESIZE
BOX_SHADE
BOX_STYLE
BOX_UPDATE
HIDDEN_CLICK
HIDDEN_COPY
HIDDEN_DELETION
HIDDEN_DRAWTEXT
HIDDEN_LEADING
HIDDEN_PASTE
HIDDEN_WIDTH
MISC_ABORTPRINT
MISC_ADDEPSCOLOR
MISC_BACKGROUND
MISC_BOXCOPY
MISC_CHECKFILETYPE
MISC_CHECK-
PAGERANGE
MISC_CHECKPLATES

MISC_CLICKOUT
MISC_CLOSE
MISC_CONVERTEPS
MISC_CREATEEPS-
FONTS
MISC_DBPICT
MISC_DELETEITEM
MISC_DOCSTATSINFO
MISC_DRAGNDROP
MISC_DRAWBOX
MISC_DUPTABLEEND
MISC_DUPTABLESTART
MISC_EDITSAVE
MISC_EXTSAVEPICT
MISC_FRAME
MISC_GETCOLORSPACE
MISC_IMAGEFILENAME
MISC_INITPRINT
MISC_LAUNCHEPS
MISC_LAUNCHPRINT
MISC_NETENTITY
MISC_NETINIT
MISC_NETUPDATE
MISC_NEW
MISC_OPEN
MISC_OPENGUIDE
MISC_PRECOPYITEM
MISC_PREDELPAGES
MISC_PREDUPITEM
MISC_PREPCOLLECT
MISC_REGTEXT
MISC_REPORTXT
MISC_REVERT
MISC_REVERTPREP
MISC_SAVE
MISC_SAVEAS
MISC_SAVECOMPLETE
MISC_SAVEPREP

MISC_SENDCLIPPATH
MISC_SETPLATE
MISC_SLUGBYTESWAP
MISC_TRAPINFOHELP
PS_COMMENTS
PS_ENDDOC
PS_ENDEPS
PS_ENDPAGE
PS_ENDTIFF
PS_INITIALIZATION
PS_OPIADDITIONAL
PS_PROCSETS
PS_STARTDOC
PS_STARTEPS
XT_ADDMENUITEMS
XT_BOXDEF
XT_COLORSEP
XT_COLORSTUFF
XT_DEINIT
XT_DEINITTEXTREAD
XT_DEINITTEXTWRITE
XT_DOCOMMAND
XT_DOMENUITEM
XT_FREEMEM
XT_GETSTATUS
XT_HIDDEN
XT_IDLE
XT_INIT
XT_INITTEXTREAD
XT_INITTEXTWRITE
XT_MISC
XT_NETLISTCHANGE
XT_NETRECEIVE
XT_OPENPALETTES
XT_PRINTEPS
XT_PRINTPS
XT_READSTUFF
XT_WRITESTUFF

XTLite User’s Guide and Getting Started Manual Page 47 Power Macintosh

Sample Routines

Alphanumeric Routines handle string conversion and manipulation.With them you
can convert between fixed values and strings, and copy, compare, and concatenate
strings.

Error-Handling Routines allow quick error checking and reporting. These routines
allow you to add error descriptions to the error list, notify the user of errors that may have
occurred, and check values entered in dialog boxes for validity.

Dialog and Window Routines handle dialog boxes, palettes, and windows. These
routines enable you to open windows, palettes, and dialog boxes, handle events that
occur within windows, palettes and dialog boxes, handle controls, and set and retrieve
values from fields.

activatewnd
alertfilter
BEGINWAP
closewnd
dehilitetxt
displaywindow
disposebits
dodialog
dotdotdot
dotdotfullpath
doupdates
drawdisableditem
edithilite
ENDWAP
fgetfield
findpalette
frontwindow
fsetfield
getfield
getnewdialog

getnewpaletteid
getpalettewptrs
invalditem
isdocumentkind
ispalette
linedraw
locktexthilite
myalert
openwnd
outlines
palettewsetup
redisplaywindow
restorewnds
selectwindow
setcheck
setditemenable
setfield
setkeywnd
setmessageparams
setradio

updatewnd
WACTIVATE
WAUTOZOOM
WCHGDOCSTAT
WCLICK
WCLOSE
WCURSOR
WDEACTIVATE
W D R A G
WIDLE
wink
W K E Y
WKEYSWTCHOUT
W O P E N
WOTHER
WRESIZE1
WRESIZE2
WUPDATE

allocerrorclearerror
fieldrangecheck
giveerror

irangecheck
istrrangecheck
rangecheck

recorderror
seterror
strrangecheck

liucompstringpstrcmp
pstrconcat
pstrcpy
str2val

str2val2
str2valbuf
strcmp
strconcat

strcpy
val2str2
val2strbuf

XTLite User’s Guide and Getting Started Manual Page 48 Power Macintosh

Sample Routines

Menu-Handling Routines add and handle menu items.

Text Routines allow you to access the textual content of an open document. They
enable you to create and delete characters, retrieve and change character attributes, and
retrieve and change paragraph formats.

Style Sheets and H&J Routines allow you to access style sheets and H&J speci-
fications. These routines enable you to: add, modify, and delete style sheets; and add,
modify, and delete H&J specifications.

addhandj
addhyphexcep
addstyle
beginhyphexcep
counthandjs
countstyles
delhandjbyindex
delhyphexcep
delstylebyindex
endhyphexcep

findhyphexcep
findhyphexcepbyindex
gethandjbyindex
gethandjbyindex2
gethandjbyindex3
gethandjbyname
gethandjbyname2
gethandjbyname3
gethyphmethod
getstylebyindex

getstylebyindex2
getstylebyname
getstylebyname2
hyphenateword
numhyphexceps
sethandjbyindex
sethyphmethod
setstylebyindex
setstyleontext

beginfract
blkcmp
chngpostatrib
cpos2bptr
create_fontlist
cursorposition
delchars
endfract
extractword
FCharWidth
getchar
getchars
getfontnameorid
getlos
getlos2
getparafmt
getpattribs
gettattribs
getxepstuff

getxepstuff2
getxetstuff
getxetstuff2
locatenextstory
myfonttype
nukedocs
putchar
putchars
recalcdoc
setparafmt
showsel
storydirty
textscroll
updatfontlisthndl
updathndlorvars
xeactivate
xecalc
xecopytext
xedelchars

xedrawall
xedrawsel
xegetallattribs
xegetattrib
xegetinfo
xegetinfo2
xegetselrect
xegetstoryattb
xegetstorylock
xeputchar
xeputchars
xesetattrib
xesetcalc
xesetsel
xesetstoryattb
xesetstorylock
xgetcaretpos
xtgetauxfontinfo

allochierid
allocmenuiconid

allocmenuid
deltmpcolormitem

makestylemenu

XTLite User’s Guide and Getting Started Manual Page 49 Power Macintosh

Sample Routines

Import and Export Routines enable QuarkXPress to read and write new file for-
mats from text to geometry and graphics.

System Routines allow you to access system parameters at both the document and
system level.

File-Handling Routines give you the power to find files, save documents, and
manipulate path names.

Network Communication Routines exchange information between XTensions
so that you can find out who is available on a network; and send and receive information
from other XTensions.

Hidden Text Routines allow XTensions to insert hidden text data into the text
stream. You can use the routines to anchor elements to text (anchored graphics are a
form of hidden text), and identify text so that it can be read and processed by your
machine.

cleanselrange
decrement
findopcode

h_delchars
h_getchar
h_getchars

increment
inserthidden
skiphidden

getnetinfo
getnetinfo2
getnetlist
getruncount

qpacketcancel
qpacketsubscribe
qphandler
rebuildnetlist

sendq

addftypealias
duplicatefile
extendedsave
extractflname
findfile
getbackuppath

getfile
getfilesbytype
getfilesbytype2
getfullpath
HandToXHand
newsave

processtats
putfile
save
setbackuppath
setuppath2
writestats

getprefs
getspacealignvalues
getstepoffsets
getsysdefs

getsysdefs2
getsysinfo
setprefs
setspacealignvalues

setstepoffsets
setsysdefs
setsysdefs2
setsysinfo

addpicimport
addpicimport2
addtextexport
addtextexport2
addtextimport

addtextimport2
addtiffimport
exportbuf
getfilterinfo
gettextpict

gettextpict2
importbuf
savetext
savetext2

XTLite User’s Guide and Getting Started Manual Page 50 Power Macintosh

Sample Routines

Utility Routines provide XTensions with an array of flexible routines that allow you to
simplify XTension source code, debug XTension source code, add and select tools, add
menu commands, hyphenate words, obtain information about a printer, and send
PostScript commands directly to a printer.

Box Routines allow you to access text and picture boxes so you can create, manipu-
late, and delete picture and text boxes; navigate between boxes, perform global opera-
tions on the contents of boxes, and identify boxes for current and future reference.

Box-Grouping Routines handle relationships between boxes. Using them, you can
group boxes, add boxes to a group, ungroup boxes, get information about a group, and
create a multiple-box selections.

addtogroup
boxesingroup
constraingroup
deletegroupbox

getgroupelement
group
isboxingroup
recalcgpbox

ungroup

addframe
box2page
bringforward
copyitems
createmultbox
curboxsprdorigin
deletebox
disposebox
doframe
dohandles
drawbox
fgetbbox
findslug
findslug2
finsetpoly
firstbox
free_pixmap
getbox
getbox2
getboxtype
getboxtypes2

getscaledcontrgn
getscaledframe
getscaledframerect
getslug
getslug2
getsprdbox
gettextflowrgn
gotobox
hasrunpolys
inhandles
installbox
invalbox
invalframe
isapicture
isgraphicbox
ismanualimage
istextbox
isuserbox
lastbox
movebox
newbox

newbox2
nextbox
nexttextbox
offsetbox
pasteitems
pasteitemsatxy
prevbox
prevtextbox
relinkbox
sendbehind
setbox
setbox2
setcurbox
setslug
setslug2
settextoutset
simplefpoly
special
updatethebox
xelinkbox
xeunlinkbox

addhelp
addtool
ADDXT
ADDXTSECURE
allocicon
BEGIN_XT
cmdperiod
copyprintsetup
devtype
docommand

docommand2
END_XT
getmode
getwarrantyinfo
getxtinfo
LOCK_XT
makeeps
postsend
postsendbuf
postsendnocr

quitxpress
registersecurext
registerxt
scrollxticon
setmode
setundo
spellmenu
UNLOCK_XT
updatedocfonts
zerodata

XTLite User’s Guide and Getting Started Manual Page 51 Power Macintosh

Sample Routines

Spread and Page Routines handle the creation and manipulation of spreads and
pages. Use them to create, move, and delete spreads and pages; navigate among
spreads and pages; apply master pages; and convert spread coordinates between
spread and page coordinates.

Guideline Routines give you the ability to add, move and delete page guides.

Color Routines control the color attributes in a document and enable you to add,
change, and delete colors; get information about specific colors; retrieve and change tap-
ping values, convert between RGB, CMYK, and HSB color models.

addbackground
addcolor
cmyk2rgb
countcolors
delcolorbyid
getcolorbyindex
getcolorbyname
hsv2rgb

mygetgray
pantone2rgb
restorecolor
rgb2cmyk
rgb2hsv
setcolor
setcolorbyid
shadecmykcolor

shadecolor
xtgetlistcolor
xtgetlistcolor2

addguide
countguides
delguidebyindex

getallguides
getallguides2
getguidebyindex

registerguide
setguidebyindex

applymaster2pages
createmaster
deldefpages
deletepages
getdisppagenum
getfullmastername
getmastername
getpagedata
getpagedata2
getpageseq
gotomaster
gotopage

insertpages
insertpages2
interdoccopypages
isdbldef
mousepage
movepages
nummasterpages
nummastersprds
numpages
numsprds
offpage
pagefrect2sprd

pagept2sprd
redrawpage
replicateitems
rightmaster
setsectionstart
setsprdorigin
sprd2pages
sprdfrect2page
sprdpt2page
updatepagepalette
whichpage
xtgetpageinfo

XTLite User’s Guide and Getting Started Manual Page 52 Power Macintosh

Becoming an XTension Developer

Additional Information or to Apply to be an XTension Developer

� To receive more information about the XTension Developer program, you may
contact the Developer Desk by ground mail, electronic mail or Fax.

Electronic Mail: You can reach the XTension Developer Desk at Quark via electronic
mail in several ways. Electronic mail messages can be received via AppleLink,
CompuServe, and America Online. Messages received by electronic mail will receive pri-
ority of any other means of communication.

- Electronic Mail Address

AppleLink QUARKXT

CompuServe 75140,1136

Internet 75140.1136@COMPUSERVE.COM

Japan Developer Desk (for East Asian Developers)

AppleLink QUARK.J.DVJ (send ATTN: XTension East Asian
Developer Desk)

- Ground Mail Address for all programs except East Asian

U.S. QuarkXTension Developer Desk
1800 Grant Street
Denver, CO 80203

- Ground Mail Address for a East Asian Developers

QMH Japan B.V., Japan Branch
5FKHO Building
3-14-16 Higashi
Shibuya-ku
Tokyo 150 Japan

- Fax Number
(303) 894-3399

XTLite User’s Guide and Getting Started Manual Page 53 Power Macintosh

XTLite User’s Guide and Getting Started Manual Page 54 Power Macintosh

